Migrating Exasol Community Edition

In one of my older posts I described the data architecture, I am using for all my examples. As the database I use the Exasol Community Edition. From time to time it is necessary to update your software to the current version because of new features. This post will describe, how to migrate a Exasol community edition to anther one. These steps can also be used, to migrate nearly every database to an Exasol.

Continue reading “Migrating Exasol Community Edition”

xG data journey – the raise of M. Gladbach

After getting all this expected goals data, it’s of course most obvious to take a look at the insights such data can produce and in which way xG can be interpreted. I have decided to take a look at the current development of Borussia Moenchengladbach in the Bundesliga . Even if RB Leipzig took over now the first place, the development of Gladbach in comparison to the last seasons is impressive. And now I just want to know: Does xG data reveals the secret of Marco Rose?

Continue reading “xG data journey – the raise of M. Gladbach”

From Business Analytics to Sports Analytics

Before I started analyzing data for sports betting I have worked as a Business Intelligence (BI) consultant in different industries. During this time I learned how Business Analytics helps you to improve your business performance by analyzing data. This also helped me to understand, what’s needed to improve the performance of a sports team or the betting performance of a punter with the help of data.

Continue reading “From Business Analytics to Sports Analytics”

xG data journey – scrapping dynamic webpages

In the first part of this data journey, I took a look  at the general definition of expected goals (xG) and the usage of this metric. In the next step in the process of testing the predictive power of xG, I need to get some data. This part will focus on getting the team expected goals statistics. In one of the following parts, I will also take a look on getting the player expected goals statistics as this of course offers even deeper insights.

Continue reading “xG data journey – scrapping dynamic webpages”

xG data journey – What are ExpectedGoals?

After I realized my available data is definitely not enough to beat the bookie, I decided to start a new data journey and take a look at some more advanced statistics. And what could be better suited as Expected Goals (xG). This statistic is used more and more to explain this specific luck / bad luck factor, you feel, when watching a football match. In the first part of this journey I will explain, what are xG and what they tell you about a football match. Continue reading “xG data journey – What are ExpectedGoals?”

Retrospective for Bundesliga season 2018/19

Before the new season will start I should take a look at the last season. Everybody following my pick history already knows: the last season again was very disappointing! But I again have to point out, that I of course did not expect to find the “holy grail” after just two seasons of model testing. So how bad do the numbers really look, and what are the most important “lesson learned” are….

Continue reading “Retrospective for Bundesliga season 2018/19”

Overcome your confirmation bias (guest blog)

When you follow my twitter account, you may have noticed, since several month I started also writing blogs and articles for other platforms. Even so these are most of the time not about sports betting, I thought it would be a good idea, to share them also via my blog and also share some thoughts about the topics as the main message is often the same: Get the most out of your data!

Continue reading “Overcome your confirmation bias (guest blog)”

A data journey – market values (part 2)

In the last post I described, how I collected the market value data as the first step of my journey. The second step is – in my opinion – one of the most important ones. Get to know your data! Of course many predictive methods can be used as a black box. But that’s something I would not suggest. At least you should understand how your values are distributed. And it’s even better, when you build some kind of domain knowledge. To know your data offers you the possibility to shorten the training process of you predictive models. And visualizations always help to better understand your data. Continue reading “A data journey – market values (part 2)”

A data journey – market values (part1)

When a rich club in Germany goes through a bad performance phase or loses an important match, we like to use the phrase “Geld schießt eben keine Tore”. What means more or less, that big money doesn’t ensure goals. But the overall acceptance is of course,  that richer clubs are expected to win more often as they got the money to buy the best players. This inspired me to start a data journey about market values in the big 5 European leagues: What do the market values tell about the development in the different leagues? How do teams perform in relation to the money they spent? Does the market value of a team has a predictive significance?

Continue reading “A data journey – market values (part1)”