How does my typical betting weekend looks like, when I start ckecking, whether there are some interesting matches? I start my laptop, open the browser, start my Python program, start the database and after some minutes, I am able to start my data prcoessing, which collects all the data and calculates the predictions. That’s already great, but wouldn’t it be even better to have all predictions always already up-to-date? This blog will show you how to setup and run a small automated data pipeline in AWS, which extracts all stats from Understat.com.
Continue reading “Automate your betting models with AWS”Migrating Exasol Community Edition
In one of my older posts I described the data architecture, I am using for all my examples. As the database I use the Exasol Community Edition. From time to time it is necessary to update your software to the current version because of new features. This post will describe, how to migrate a Exasol community edition to anther one. These steps can also be used, to migrate nearly every database to an Exasol.
Continue reading “Migrating Exasol Community Edition”Exasol Python UDF web scraper for Bundesliga match day fixtures
The hardest part of sports analytics is getting data! Not for nothing there are companies, which earn their money just with sports data. But if you are not able or do not want to pay such amounts of money, you got just one possibility: scraping the data from the Web. In an older post, I described a R web scraper. As this one was no longer working, I needed a new one. What brings us to this post. This time I will describe, how to create a web scrapper for static HTML sites with Python and how you are able to implement such a web scrapper as a User Defined Function (UDF) in Exasol.
Continue reading “Exasol Python UDF web scraper for Bundesliga match day fixtures”
How To: Run TensorFlow in Exasol Community Edition
There is one big reason, why I have chosen Exasol as a database for my football analytics and predictions: Exasol is capable of executing Python and R code inside the database. Your are able to put your statistical calculations and predictive models to your data. The feature User Defined Functions (UDFs) provides the possibility to implement every logic which you normally code in Python or R. This is a really efficient way to extent plain SQL with some predictive functionality like the execution of TensorFlow models.
In this blog post I will explain, how you extend the Exasol community edition with all needed Python3 packages to execute Tensorflow models. Additionally with the latest update I also added the packages and description needed for all my web scrapping scripts.
Continue reading “How To: Run TensorFlow in Exasol Community Edition”
Connecting to Exasol via Python
As mentioned in the last post, I am now going to use TensorFlow to build my first own predictive model. But before, there are several small steps, which need to be taken. At first I want to explain, how your able to read and write data via a Python script into Exasol. This is needed to read the different predictive variables and write back results of a prediction into the database when developing models.
Article at DOAG Business News
Everyone, who follows my blog, will have noticed, that I did not published any post for a long time. This was because I first could publish my first article for the DOAG Business News and after that had two presentations at the DOAG conference.
How To: Install TensorFlow for Windows
I currently started to test machine learning algorithms to predict the results of football matches. I especially tried to use neural networks. But I soon realized, that the possibilities of R regarding neural networks are a little bit limited. So I want to take a look at TensorFlow. TensorFlow is a machine learning library provided by Google, which was already used for many different use-cases and proved its suitability.
As the installation process for TensorFlow was not self-explanatory, I thought, it would be a good idea to provide a small installation guide. I want to explain, how I installed TensorFlow and the Python GUI PyCharm.
GitHub Repository added
I decided to additionally share my sources, which I use to build BeatTheBookie. So everybody is able to re-use them and build his own analytical system. I added a new page to the blog, where you can find the link to the GitHub repository.
Prepare data: football-data.co.uk (part 2)
In the first part Prepare data: football-data.co.uk (part 1) I described how the Data Vault model for the data of football-data.co.uk looks like. In the second part I will now focus on loading data into the Data Vault model. With the overall analytical architecture in mind this equates the data integration process between the stage layer and the raw data layer.
Continue reading “Prepare data: football-data.co.uk (part 2)”
Prepare data: football-data.co.uk (part 1)
In the post Gather data: football-data.co.uk I described, how you can load CSV data into the Exasol database. As the data is now available at the Stage Layer in the database, I must now prepare the data and persist it at the Raw Data Layer, so that I can easily use it for building predictive models.
With part 1 of this post I want to explain, what Data Vault modeling is and how the Data Vault model for the data structure of football-data.co.uk looks like. With part 2 I will explain, how you load data into the developed Data Vault model.
Continue reading “Prepare data: football-data.co.uk (part 1)”
You must be logged in to post a comment.